

Telecoupling Toolbox: Integrated Tools for Sustainability Science

February 26th, 2019

Webinar series Telecoupling: A New Frontier for Global Sustainability

Telecoupling: A New Frontier for Global Sustainability

- February 19th, 2019: Telecoupling 101: Concepts, Terminology, and Published Case Studies
- February 26th, 2019: Telecoupling Toolbox: Integrated Tools for Sustainability Science
- March 12th, 2019: Telecoupling GeoApp: Cloud-based Platform Overview and Widgets
- March 19th, 2019: Telecoupling GeoApp: Case Studies with Story Maps

WEBINAR REGISTRATION AVAILABLE @

https://telecouplingtoolbox.org/webinar

POLL 1

Online Presence

- http://csis.msu.edu/telecoupling
- https://telecouplingtoolbox.org/

Telecoupling: Understanding how small -- and connected -- the world is

To understand today's hyper-connected world and achieve a sustainable future, it takes an umbrella. That umbrella is telecoupling, a new avenue of research that enables natural and social scientists across various disciplines to understand and generate information for managing how humans and nature sustainably coexist.

OPEN COMMUNITY FORUM

More

- Systems
- Flows
- Agents
- Causes
- Effects (environmental / socioeconomic)

- Systems
- Flows
- Agents
- Causes

• Effects

(environmental / socioeconomic)

Multi-level Approach

"Part of the problem is that we have studied these phenomena in separate boxes to which we have given special names — politics, economics, the social structure, culture — without seeing that these boxes are constructs more of our imagination than of reality. The phenomena dealt with in these separate boxes are so **closely intermeshed that each presumes the other, each affects the other, each is incomprehensible without taking into account the other boxes**."—Immanuel Wallerstein 2004: World-Systems Analysis

Telecoupling Framework (example)

Systems	Agents	Flows	Causes	Effects	
Sending	•soybean	Material/	Economic	Environmental	
Receiving	 soybean 	 soybeans from 	soybeans	ecosystem services	-
 China 	consumers	Brazil to China	Political	 CO2 emissions 	USA
Spillover	 governments trade companies 	 money from China to Brazil fossil fuels in 	 government interest in soybean investment 	 Change in using fertilizers for more intensive farming 	
		transportation	Technological	Socioeconomic	
۰		Information •prices •agricultural	 improved tropical agricultural technology 	 land use change (e.g. conversion of soybean land to corn field in China 	
X		techniques	Ecological • differences in climate	due to lower price of soybean from Brazil)	
	The state	a series and a series	for growing soybeans	 food security 	
12		2 Minister	Cultural • Chinese preference	 displacement of local people in Brazil 	
V			for soybeans and diet shift towards meats	 farmers' income change in food prices 	

POLL 2

Existing Tools & Applications

EcoServ-GIS

Existing Tools & Applications - InVEST

Model	ES Type
Habitat Quality	Supporting ES
Habitat Risk Assessment	Supporting ES
Forest Carbon Edge Effect	Final ES
Coastal Blue Carbon	Final ES
Annual Water Yield	Final ES

integrated valuation of ecosystem services and tradeoffs

https://naturalcapitalproject.stanford.edu/invest/

Existing Tools & Applications - EnviroAtlas

Geospatial Toolboxes	Туре
Dasymetric Toolbox	ArcGIS 10.3
Analytical Tools Interface for Landscape Assessments (ATtILA)	ArcGIS 10.5.1 or less
Ecosystem Rarity Toolbox	ArcGIS 10.3
Automated Geospatial Watershed Assessment (AGWA)	AGWA Modeling Tool

https://www.epa.gov/enviroatlas/enviroatlas-tools

Existing Tools & Applications - ARIES

Components	Туре
ARIES explorer (user side)	Web interface <i>(not yet publicly available)</i>
k.LAB software (modeler side)	Set of tools (in-person trainings)

http://aries.integratedmodelling.org/

http://www.integratedmodelling.org/

Existing Tools & Applications - LUCI

Ecosystem Services

Agricultural Production

Erosion Risk and Sediment Delivery

Carbon Sequestration

Flood Mitigation

Habitat Provision

Water Quality - Nitrogen and Phosphorus

https://www.lucitools.org/

Existing Tools & Applications - SolVES

Toolbox Version (SolVES 3.0)

ArcGIS 10.x (unclear the ongoing support for ArcGIS)

Requires installation of MaxEnt

.NET framework

Java

https://solves.cr.usgs.gov/

- Developed by the USGS Geosciences and Environmental Change Science Center (GECSC)
- Incorporates quantified and spatially explicit social-values information into ecosystem service assessments

Existing Tools & Applications - EcoServ-GIS

Toolkit Version (EcoServ-GIS 3.3)

ArcGIS Desktop (10.2.2 onwards) with the Spatial Analyst Extension (Advanced Licence)

Maps ecosystem services at county or regional scale

Regulating and cultural ecosystem services

"More simplified process models" -compared to InVEST

- "More simplified process models" (compared to InVEST)
- Reduces the need for academic or specialist input

https://ecosystemsknowledge.net/ecoserv-gis

Telecoupling Toolbox - Systems Integration Approach

• A spatial location is assigned to most components of the telecoupling framework (systems, agents, flows, causes, effects)

• The spatial resolution of analysis is flexible, allowing users to address questions at local, regional, or global scales (intrinsic property of a GIS system)

- Can be expanded to include as many quantitative/qualitative tools as needed (including 3rd party tool integrations)
- Re-use sub-module components across tools if needed

• Take full advantage of the interactive functionalities offered by the GIS software environment

• Code is publicly shared and freely available on Github (<u>https://github.com/MSU-CSIS/telecoupling-toolbox</u>)

Telecoupling Toolbox - ArcGIS Toolbox (v2.3)

Pros

- Full control on layer symbology
- Adjust coordinate projections
- Integrate with other ArcGIS tools
- Can run lengthy processing tasks

Cons

- Windows OS only
- Annual paid license
- Proficiency in ArcGIS required
- Several installation steps (3rd party tools integrations)
- Runtime errors are system-dependent
- Execution time can vary (CPU/RAM)

Telecoupling Toolbox - GeoApp

Pros

- No software installation required
- Free and cross-platform
- Same experience for every user
- Scalable load balance
- Integration with several publicly available GIS layers
- Interactive and dynamic experience
- No GEE authentication

Cons

- Requires internet connection
- Data preprocessing still needed
- Widgets cannot be modified by users
- Layer symbology is fixed
- Users cannot add raster data directly to basemap (*might change soon*)
- Only operational layers are permanent (browser session cannot restore output layers after re-opening)

Telecoupling Toolbox - ArcGIS Toolbox (v2.3)

LIVE DEMO

Thank you! Q&A

https://www.surveymonkey.com/r/LQ2KRLM

Telecoupling: A New Frontier for Global Sustainability

- February 19th, 2019: Telecoupling 101: Concepts, Terminology, and Published Case Studies
- February 26th, 2019: Telecoupling Toolbox: Integrated Tools for Sustainability Science
- March 12th, 2019: Telecoupling GeoApp: Cloud-based Platform Overview and Widgets
- March 19th, 2019: Telecoupling GeoApp: Case Studies with Story Maps

WEBINAR REGISTRATION AVAILABLE @

https://telecouplingtoolbox.org/webinar

Reference Publications

 McCord, P., Tonini, F., and Liu, J. (2018). Making strides in sustainable development with the Telecoupling GeoApp. Science Trends, September 6, 2018.https://sciencetrends.com/making-strides-in-sustainable-development-with-the-telecoupling-geoapp/

- McCord, P., Tonini, F., and Liu, J. (2018). The Telecoupling GeoApp: A Web-GIS Application to Systematically Analyze Telecouplings and Sustainable Development. *Applied Geography*, 96, pp. 16-28. <u>https://doi.org/10.1016/j.apgeog.2018.05.001</u>
- Tonini, F., and Liu, J. (2017). Telecoupling Toolbox: Spatially explicit tools for studying telecoupled human and natural systems. *Ecology and Society*, 22 (4), pp. Art11.<u>https://doi.org/10.5751/ES-09696-220411</u>